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ABSTRACT 
 

This study aimed at predicting feed conversion ratio (FCR) of young rabbits from abundances of 
amplicon sequence variants (ASVs) to improve this trait by selecting animals with the most favorable 
microbiota and identifying the most relevant microorganisms involved in feed efficiency. Data come 
from two rabbit populations coming from paternal INRA 1001 line (the G10, selected for 10 
generations for decreased residual feed intake and the G0 control produced from frozen embryos of 
the common ancestor line). There were 296 and 292 FCR data from G10 and G0 individuals, 
respectively. Phenotypic data were pre-corrected for the systematic effects of group, batch, litter size 
and sex and the random litter effect. Sequence quality control and chimera removal were performed 
with the DADA2 pipeline. Samples with less than 5,000 final sequence counts and doubleton ASV 
were removed. The ASV counts of the final table (including 918 ASVs) were centered log-ratio 
transformed and corrected for batch effects with a surrogate variable analysis. Nested resampling for 
hyper-parameter tuning and prediction validation was implemented leading to 25 pairs of training/test 
sets. Bayesian regression models (Bayesian Lasso, Bayesian Ridge Regression and Reproducing 
Kernel Hilbert Spaces) and machine learning algorithms (Support vector machine and Elastic net) 
were fitted to all ASVs leading to an almost null prediction accuracy in all cases. Then, ASVs were 
ranked for their prediction importance using the permutation accuracy importance score in a Random 
Forest algorithm based on conditional inference and, different subsets of increasing size (50, 100, 150, 
200, 300, 400, 500, All) of the most important ASVs and surrogate variables were used as predictors 
in the machine learning algorithms. The best performance and the most stable results were obtained 
with machine learning using the 100 most important ASVs being most of them assigned to order 
Clostridiales. The medians of the Spearman correlation (interquartile range) were 0.33 (0.09) and 0.32 
(0.06) for SVM and ENET, respectively. 
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INTRODUCTION  
 

Rabbit gut microbiota plays an important role in production traits (Drouilhet et al., 2016) because of 
its effect on metabolic, nutritional, physiological, and immunological processes. Among production 
traits, feed efficiency (FE) is one of the most important components of productivity, profitability and 
sustainability of meat production and, therefore, improving this trait is a priority. One possible strategy 
could be to change animal’s gut microbial composition based on its effect on animal performance. In 
addition, recent studies indicate that gut microbiota is heritable and could be modified by selection 
(Velasco-Galilea et al., 2018; Crespo-Piazuelo et al., 2019). Therefore, selecting animals with the 
optimal microbial composition based on its effect on FE could also lead to selection of individuals 
with genes that promote the presence of those beneficial microorganisms. Selection would be based on 
the prediction of FE (previously corrected by environmental factors) obtained from high-throughput 
deep sequencing data of microbial composition. Machine learning (ML) algorithms can be suitable 
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models because they are efficient for finding generalizable patterns from high-dimensional data in a 
small number of samples.  
 

This research aimed at assessing the suitability of ML algorithms for the prediction of feed efficiency 
from abundances of amplicon sequence variants (ASVs) and identifying the most relevant 
microorganisms involved. 
 
 

MATERIALS AND METHODS 
 

Animal material and experimental design.  
 

The experimental rabbits came from the paternal INRA 1001 line. Two populations were used in this 
analysis: G10, selected for 10 generations for decreased residual feed intake (RFI) (Drouilhet et al., 
2016), and G0 control produced from frozen embryos of the ancestor population of the selected line. 
The 296 G10 and 292 G0 rabbits were produced in 3 batches with a 42 days interval. In each batch, 
half of the kits were fostered by G0 does and the rest by G10 does. The does adopted alternatively kits 
from both lines in successive batches. At weaning (32 days), kits were placed in individual cages. 
More details about the experiment can be found in Garreau et al., (2019). Genomic DNA of caecal 
samples collected from 588 kits was extracted with ZR Soil Microbe DNA MiniPrepTM kit 
(ZymoResearch, Freiburg, Germany). A fragment containing V4-V5 hypervariable regions of the 16 
rRNA gene was amplified with the pair of primers F515Y/R926 (Parada et al., 2016) and re-amplified 
in a limited-cycle PCR to add barcodes of multiplex Nextera® XT kit (Illumina, Inc., San Diego CA, 
United States) following the manufacturer’s instructions. Final libraries were paired-end sequenced in 
parallel in a MiSeq Illumina 2x250 platform at the Autonomous University of Barcelona. 
 
Bioinformatics 
 

Sequence processing was performed using QIIME2 software (version 2018.6; Bolyen et al., 2018). 
Sequence quality control and chimera removal were performed in a single step with the DADA2 
pipeline (Callahan et al., 2016), implemented through the q2-dada2 plugin. The output table 
containing the counts of unique sequences for each sample, i.e., 100% ASVs, was clustered into ASVs 
with 99% similarity. The ASV table was filtered at: (1) sample level by discarding samples with less 
than 5,000 final sequence counts and at (2) ASV level by removing the doubleton ones. The ASV 
counts of the final table (including 918 ASVs) were centered log-ratio transformed using the R 
package “chemometrics” to account for the compositional nature of microbiota data. Taxonomic 
assignment of ASVs was conducted by mapping them to the Greengenes reference database. 
 
Data and Statistical Analysis 
 

Feed efficiency was measured as feed conversion ratio (FCR), i.e., feed intake divided by body weight 
gain. The statistical analysis was performed in three steps. In a first step, FCR records were pre-
corrected for the systematic effects of group, batch, litter size and sex, and the random effect of litter. 
Then, a surrogate variable analysis (Leek and Storey, 2007) was performed using the R package 
“SVA” to include surrogate variables (SV) in the model of prediction which allows accounting for 
unnoticed factors of variation affecting ASVs abundances. In a second step, the ASVs were ranked for 
their predictive importance using the permutation accuracy importance score in a Random Forest 
algorithm based on conditional inference (Strobl et al., 2007). In the last step, different subsets of 
increasing size (i.e., 50, 100, 150, 200, 300, 400, 500 and 918) of the most important ASVs and SV 
were selected as predictors of FCR using two machine learning algorithms. Support Vector Machine 
(SVM; Vapnik et al., 1999) and Elastic Net (ENET; Zou and Hastie, 2005) algorithms were 
implemented using the “mlr” R package which allows to compare results from different algorithms 
under the same conditions and to find the optimal hyper-parameters for each algorithm. Nested 
resampling for hyper-parameter tuning was implemented. It consisted of 2 nested resampling loops. In 
the outer resampling loop, a 5-fold cross-validation was repeated 5 times originating 25 pairs of 
training/testing sets. On each of those outer training sets, hyper-parameter tuning was done in an inner 
resampling loop of 5-fold cross-validation repeated 2 times using the R-squared performance criterion. 
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One set of selected hyper-parameters was obtained for each outer training set. The learner was fitted 
on each training set using the selected hyper-parameters and its performance was evaluated on the 
corresponding testing set. Predictive ability was assessed as the Spearman correlation (SC) between 
the observed and predicted records in the testing sets.  On the other hand, Bayesian regression models 
(de los Campos et al., 2013) such as Bayesian Lasso (BL), Bayesian Ridge Regression (BRR) and 
Reproducing Kernel Hilbert Spaces (RKHS; Gianola et al., 2006) were also implemented in the same 
25 pairs of training/test sets using all ASVs and SV as predictors with “BGLR” R package (Pérez & de 
los Campos, 2014). 
 
 

RESULTS AND DISCUSSION 
 

Using as predictors all ASVs and SV (Figure 1, panel A), ENET was not able to fit a model because of 
lack of convergence and SVM had a null prediction ability with a very large variability among sets 
(the median and interquartile range (IQR) of the SC were -0.07 and 0.14, respectively). Predictive 
performance was slightly better but still very low for BL, BRR and RKHS algorithms being the 
median of the SC (IQR) 0.11 (0.13), 0.11 (0.13) and 0.12 (0.08), respectively. When feature selection 
was performed (Figure 1, panel B), the predictive performance improved significantly. The best 
performances and the most stable results were obtained with SVM and ENET using the 100 most 
important ASVs. The medians of the SC (IQR) were in this case 0.33 (0.09) and 0.32 (0.06) for SVM 
and ENET, respectively.  
 

A B  
Figure 1: Boxplots of Spearman correlations between observed and predicted FCR obtained in 25 
training/testing datasets with the different algorithms using all ASVs (panel A) or subsets with 
increasing number of ASVs (panel B). 
 
Taxonomic assignment of representative sequences revealed that most (74) of the ASVs belong to 
order Clostridiales. In animals with low FCR performances, 32 ASVs belonging to order Clostridiales 
(families Lachnospiraceae (8), Ruminococcaceae (8), Clostridiaceae (1) and unknown (15)), 6 ASVs 
belonging to order Bacteroidales (families Bacteroidaceae (1), Rikenellaceae (2), S24-7 (2) and 
unknown (1)) and 2 ASVs belonging to phylum Tenericutes (orders RF39 and ML615J-28) were 
overrepresented. In addition, two completely unknown ASVs were also associated with high efficient 
animals. For animal with high FCR,  42 ASVs belonging to order Clostridiales (families 
Lachnospiraceae (14), Ruminococcaceae (15) and unknown (13)), 10 ASVs belonging to order 
Bacteroidales (families Bacteroidaceae (3), Rikenellaceae (3), S24-7 (3) and unknown (1)), 2 ASVs 
belonging to phylum Tenericutes (order RF39,) 2 ASVs belonging to order Verrucomicrobiales (genus 
Akkermansia) and 2 ASVs belonging to phylum Proteobacteria (families Oxalabacteraceae and 
Desulfovibrionales) were overrepresented. 
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CONCLUSIONS 

 

Support Vector Machine and Elastic net algorithms enabled the best prediction of FCR when the 
abundances of the 100 most important ASVs were used as predictive variables. Taxonomic assignment 
of the representative sequences of these selected ASVs revealed that different species belonging to 
order Clostridiales are involved in feed efficiency. 
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